Abstract:Model merging combines multiple fine-tuned models into a single model by adding their weight updates, providing a lightweight alternative to retraining. Existing methods primarily target resolving conflicts between task updates, leaving the failure mode of over-counting shared knowledge unaddressed. We show that when tasks share aligned spectral directions (i.e., overlapping singular vectors), a simple linear combination repeatedly accumulates these directions, inflating the singular values and biasing the merged model toward shared subspaces. To mitigate this issue, we propose Singular Value Calibration (SVC), a training-free and data-free post-processing method that quantifies subspace overlap and rescales inflated singular values to restore a balanced spectrum. Across vision and language benchmarks, SVC consistently improves strong merging baselines and achieves state-of-the-art performance. Furthermore, by modifying only the singular values, SVC improves the performance of Task Arithmetic by 13.0%. Code is available at: https://github.com/lyymuwu/SVC.
Abstract:The rapid advancement of Large Language Models (LLMs) has catalyzed the development of autonomous agents capable of navigating complex environments. However, existing evaluations primarily adopt a deductive paradigm, where agents execute tasks based on explicitly provided rules and static goals, often within limited planning horizons. Crucially, this neglects the inductive necessity for agents to discover latent transition laws from experience autonomously, which is the cornerstone for enabling agentic foresight and sustaining strategic coherence. To bridge this gap, we introduce OdysseyArena, which re-centers agent evaluation on long-horizon, active, and inductive interactions. We formalize and instantiate four primitives, translating abstract transition dynamics into concrete interactive environments. Building upon this, we establish OdysseyArena-Lite for standardized benchmarking, providing a set of 120 tasks to measure an agent's inductive efficiency and long-horizon discovery. Pushing further, we introduce OdysseyArena-Challenge to stress-test agent stability across extreme interaction horizons (e.g., > 200 steps). Extensive experiments on 15+ leading LLMs reveal that even frontier models exhibit a deficiency in inductive scenarios, identifying a critical bottleneck in the pursuit of autonomous discovery in complex environments. Our code and data are available at https://github.com/xufangzhi/Odyssey-Arena
Abstract:Recent advances in autonomous LLM agents demonstrate their ability to improve performance through iterative interaction with the environment. We define this paradigm as Test-Time Improvement (TTI). However, the mechanisms under how and why TTI succeed or fail remain poorly understood, and existing evaluation metrics fail to capture their task optimization efficiency, behavior adaptation after erroneous actions, and the specific utility of working memory for task completion. To address these gaps, we propose Test-time Improvement Diagnostic Evaluation (TIDE), an agent-agnostic and environment-agnostic framework that decomposes TTI into three comprehensive and interconnected dimensions. The framework measures (1) the overall temporal dynamics of task completion and (2) identifies whether performance is primarily constrained by recursive looping behaviors or (3) by burdensome accumulated memory. Through extensive experiments across diverse agents and environments, TIDE highlights that improving agent performance requires more than scaling internal reasoning, calling for explicitly optimizing the interaction dynamics between the agent and the environment.
Abstract:Continual learning (CL) in vision-language models (VLMs) faces significant challenges in improving task adaptation and avoiding catastrophic forgetting. Existing methods usually have heavy inference burden or rely on external knowledge, while Low-Rank Adaptation (LoRA) has shown potential in reducing these issues by enabling parameter-efficient tuning. However, considering directly using LoRA to alleviate the catastrophic forgetting problem is non-trivial, we introduce a novel framework that restructures a single LoRA module as a decomposable Rank-1 Expert Pool. Our method learns to dynamically compose a sparse, task-specific update by selecting from this expert pool, guided by the semantics of the [CLS] token. In addition, we propose an Activation-Guided Orthogonal (AGO) loss that orthogonalizes critical parts of LoRA weights across tasks. This sparse composition and orthogonalization enable fewer parameter updates, resulting in domain-aware learning while minimizing inter-task interference and maintaining downstream task performance. Extensive experiments across multiple settings demonstrate state-of-the-art results in all metrics, surpassing zero-shot upper bounds in generalization. Notably, it reduces trainable parameters by 96.7% compared to the baseline method, eliminating reliance on external datasets or task-ID discriminators. The merged LoRAs retain less weights and incur no inference latency, making our method computationally lightweight.
Abstract:Pathophysiolpgical modelling of brain systems from microscale to macroscale remains difficult in group comparisons partly because of the infeasibility of modelling the interactions of thousands of neurons at the scales involved. Here, to address the challenge, we present a novel approach to construct differential causal networks directly from electroencephalogram (EEG) data. The proposed network is based on conditionally coupled neuronal circuits which describe the average behaviour of interacting neuron populations that contribute to observed EEG data. In the network, each node represents a parameterised local neural system while directed edges stand for node-wise connections with transmission parameters. The network is hierarchically structured in the sense that node and edge parameters are varying in subjects but follow a mixed-effects model. A novel evolutionary optimisation algorithm for parameter inference in the proposed method is developed using a loss function derived from Chen-Fliess expansions of stochastic differential equations. The method is demonstrated by application to the fitting of coupled Jansen-Rit local models. The performance of the proposed method is evaluated on both synthetic and real EEG data. In the real EEG data analysis, we track changes in the parameters that characterise dynamic causality within brains that demonstrate epileptic activity. We show evidence of network functional disruptions, due to imbalance of excitatory-inhibitory interneurons and altered epileptic brain connectivity, before and during seizure periods.
Abstract:Linguistic expressions of emotions such as depression, anxiety, and trauma-related states are pervasive in clinical notes, counseling dialogues, and online mental health communities, and accurate recognition of these emotions is essential for clinical triage, risk assessment, and timely intervention. Although large language models (LLMs) have demonstrated strong generalization ability in emotion analysis tasks, their diagnostic reliability in high-stakes, context-intensive medical settings remains highly sensitive to prompt design. Moreover, existing methods face two key challenges: emotional comorbidity, in which multiple intertwined emotional states complicate prediction, and inefficient exploration of clinically relevant cues. To address these challenges, we propose APOLO (Automated Prompt Optimization for Linguistic Emotion Diagnosis), a framework that systematically explores a broader and finer-grained prompt space to improve diagnostic efficiency and robustness. APOLO formulates instruction refinement as a Partially Observable Markov Decision Process and adopts a multi-agent collaboration mechanism involving Planner, Teacher, Critic, Student, and Target roles. Within this closed-loop framework, the Planner defines an optimization trajectory, while the Teacher-Critic-Student agents iteratively refine prompts to enhance reasoning stability and effectiveness, and the Target agent determines whether to continue optimization based on performance evaluation. Experimental results show that APOLO consistently improves diagnostic accuracy and robustness across domain-specific and stratified benchmarks, demonstrating a scalable and generalizable paradigm for trustworthy LLM applications in mental healthcare.
Abstract:Automatic Question Generation (QG) often produces outputs with critical defects, such as factual hallucinations and answer mismatches. However, existing evaluation methods, including LLM-based evaluators, mainly adopt a black-box and holistic paradigm without explicit error modeling, leading to the neglect of such defects and overestimation of question quality. To address this issue, we propose ErrEval, a flexible and Error-aware Evaluation framework that enhances QG evaluation through explicit error diagnostics. Specifically, ErrEval reformulates evaluation as a two-stage process of error diagnosis followed by informed scoring. At the first stage, a lightweight plug-and-play Error Identifier detects and categorizes common errors across structural, linguistic, and content-related aspects. These diagnostic signals are then incorporated as explicit evidence to guide LLM evaluators toward more fine-grained and grounded judgments. Extensive experiments on three benchmarks demonstrate the effectiveness of ErrEval, showing that incorporating explicit diagnostics improves alignment with human judgments. Further analyses confirm that ErrEval effectively mitigates the overestimation of low-quality questions.
Abstract:Aligning Large Language Models (LLMs) with human preferences is critical, yet traditional fine-tuning methods are computationally expensive and inflexible. While test-time alignment offers a promising alternative, existing approaches often rely on distorted trajectory-level signals or inefficient sampling, fundamentally capping performance and failing to preserve the generative diversity of the base model. This paper introduces LLMdoctor, a novel framework for efficient test-time alignment that operates via a patient-doctor paradigm. It integrates token-level reward acquisition with token-level flow-guided preference optimization (TFPO) to steer a large, frozen patient LLM with a smaller, specialized doctor model. Unlike conventional methods that rely on trajectory-level rewards, LLMdoctor first extracts fine-grained, token-level preference signals from the patient model's behavioral variations. These signals then guide the training of the doctor model via TFPO, which establishes flow consistency across all subtrajectories, enabling precise token-by-token alignment while inherently preserving generation diversity. Extensive experiments demonstrate that LLMdoctor significantly outperforms existing test-time alignment methods and even surpasses the performance of full fine-tuning approaches like DPO.
Abstract:Scientific reasoning relies not only on logical inference but also on activating prior knowledge and experiential structures. Memory can efficiently reuse knowledge and enhance reasoning consistency and stability. However, existing benchmarks mainly evaluate final answers or step-by-step coherence, overlooking the \textit{memory-driven} mechanisms that underlie human reasoning, which involves activating anchors and attractors, then integrating them into multi-step inference. To address this gap, we propose $A^3$-Bench~ https://a3-bench.github.io, a benchmark designed to evaluate scientific reasoning through dual-scale memory-driven activation, grounded in Anchor and Attractor Activation. First, we annotate 2,198 science reasoning problems across domains using the SAPM process(subject, anchor & attractor, problem, and memory developing). Second, we introduce a dual-scale memory evaluation framework utilizing anchors and attractors, along with the AAUI(Anchor--Attractor Utilization Index) metric to measure memory activation rates. Finally, through experiments with various base models and paradigms, we validate $A^3$-Bench and analyze how memory activation impacts reasoning performance, providing insights into memory-driven scientific reasoning.
Abstract:Large Language Model (LLM) Agents exhibit inherent reasoning abilities through the collaboration of multiple tools. However, during agent inference, existing methods often suffer from (i) locally myopic generation, due to the absence of lookahead, and (ii) trajectory instability, where minor early errors can escalate into divergent reasoning paths. These issues make it difficult to balance global effectiveness and computational efficiency. To address these two issues, we propose meta-adaptive exploration with LLM agents https://github.com/exoskeletonzj/MAXS, a meta-adaptive reasoning framework based on LLM Agents that flexibly integrates tool execution and reasoning planning. MAXS employs a lookahead strategy to extend reasoning paths a few steps ahead, estimating the advantage value of tool usage, and combines step consistency variance and inter-step trend slopes to jointly select stable, consistent, and high-value reasoning steps. Additionally, we introduce a trajectory convergence mechanism that controls computational cost by halting further rollouts once path consistency is achieved, enabling a balance between resource efficiency and global effectiveness in multi-tool reasoning. We conduct extensive empirical studies across three base models (MiMo-VL-7B, Qwen2.5-VL-7B, Qwen2.5-VL-32B) and five datasets, demonstrating that MAXS consistently outperforms existing methods in both performance and inference efficiency. Further analysis confirms the effectiveness of our lookahead strategy and tool usage.